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MATHEMATICAL DEMOGRAPHY OF SOCIAL SYSTEMS, II

Paul A. Ballonoff

Independent Consultant, P. 0. Box 321, Holts Summit, MO. 65043 USA

The population characteristics of a cultural system may be derived from an algebraic

description of its rules of composition.

After summarizing prior results, extension

of the technique to lineage organized systems is presented, followed with three
examples. The appendix gives tables which underlie the metheds of this paper and of

earlier work.

1. INTRODUCTION

The purpose of the mathematical theory of cul-
tural structures is to create a deductive theory
which embodies assumptions of cultural descrip-
tive science, and from these predicts the ob-
served properties of human cultures. Such a
theory should be capable of predicting the range
of possible observations, the conditions under
which each could be observed, and the proper-
ties each must have under particular conditions.

The statistical assumptions upon which previous
work [1],{4]1,[6],[7], was based (individual
uniqueness, role identity) require the use of a
statistical mechanics based on properties of the
Stirling Number of the Second Kind, rather than
on the physical-theoretical mechanics,bis?d on
the Stirling Number of the First Kind(1),(2),

The existing mathematical theory is most exten-
sively developed for "kin-based marriage rules".
However, I deliberately imply that the same
general method of construction may apply to
other forms of social interaction "rules” for
which less extensive empirical or theoretical
foundation may now exist. I therefore express
the following summary of results to date in gen-
eral terms with the caution that the statements
have only been demonstrated in depth for mar-
riage rules.

1.1. The rules of a given social system induce
the existence of particular social forms which
constrain the pgssibie relationships observed

in that system.{3)

Result 1.1 has been argued primarily from group
theoretical representations, and related tech-
niques. The thrust of this work has been that

a particular restriction on social bonds require
(or, prohibit) representation of social rela-
tionships by a particular (mathematical) group.
I refer to the order of this unique group as the
structural number of the rule [17],[6].

1.2. The rules of a particular system imply the
possible sets of population statistics which may
be associated with the system.\%)

There is a very simple mathematical form which
connects resylt 1.1 and result 1.2. If s de-
notes the structural number of a system, ng the
average family size (number of offspring per re-
producing female surviving to reproductive age,
per generation) and pg the proportion of the
adult population ascribable as "married" by
according to the rules, then at zero growth a
rule with structural number s determines unique
values ng and pg such that

NgPg = 2 (1)

This result is a very simple form of result 1.3,
below.

1.3. Structural theories give statistical re-
sults for "pure systems" in their equilibrium
state [7].

This can be seen from the following tautological
equation: .

et T = Zn(e) p(t) (2)

where r{t) may be considered a kind of growth
rate of a particular system in year t, n(t) the
cultural-theoretical average family size in year
t, p(t) the cultural-theoretical proportion of
reproducing adults in year t, and T the genera-
tion interval in years, If r{t) = 0 then (for
finite, non-zero T) eMt)T = 1, and

n(t) p(t) = 2 (3)

If, further, this system is acting according to
a rule with structural number s (and no other
rules) then n{t) = ng, p(t) = ps.

1.4. Social change (i.e., change in the partic-
ular mix of rules) is itself a cause of popula-

tion growth [7].

If, several rules are used simultaneously at
time t in proportions described by the proba-
bility row vector of degree of use coefficients,
v{t), then equation (2) must be rewritten as
T Lty pu(t) (4)

where
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"lpl « o8 nlpk_F

P =3 . . (5)
nkpl « » e o nkpk—l
and where the subscripts index rules with differ-
ent structural numbers and elements v;(t) in
v(t) show the degree of use of each. Since v(t)
is a probability vector, the product v{t)Pv(t})'
> 2 whenever any two of the v(t) are not equal
to 1 (recall that vi(t) > 0 and I vi(t) =1).
1

This also implies:

1.4', S$ingle systems using mixed rules will be
at positive growth rates if their "population
policies" account only for the equilibrium ef-
fects of the rules used singly; or equivalently,

1.4". Populations which attempt zero growth
with respect to each of the rules they use, to
the degree to which they use that rule, will at-
tain positive growth rates whenever the rules in
use do not all have the same structural number.

1.5. When a social system shifts between rules,
the greater the difference in complexity of the
rules, the greater the amount of growth which
results [7].

Consider rules with structural numbers i and j.
Let x = |pj - pjl and p = min(p;j,pj). The total
of all interaction terms between i and j in the
matrix P becomes

total PSR & (6)

interaction p2+px

For given p, this value increases for increased
x; that is the larger the absolute difference
between respective pg values, the greater the
resulting growth from change.

1.6. Population planning may not ignore the
social rules of behavior [7].

The conclusion is aobvious from the above points.

1.7. The particular time sequence of the degree
of use of rules determines the historical demo-
graphy of a system [7].

The particular sequence of v(t) vectors describ-
ing the changing mix of rules used over time of
a given system completely determine the amount

of growth computed by equation (4). This results
from 1.2 which in turn implies that the matrix P
of equation (5) is a constant matrix, whose en-
tries do not change with time; they depend only
on the particular rules in use in the relevant
portion of history of the system.

1.7'. The total passage time which the system
spends using more than one rule is directly re-
lated to the total resulting growth.

1.7". The number and particular set of rules
available therefore bounds the minimum possible
growth attained and also bounds the possible

sets of histories which may be observed.

1.8. The longer is the generation interval, for
given social rules, the Tower wil] be the yearly

growth rate.

This is obvious from equation (2), since T is
(from considerations given so far) independe?t

of other variables, while the total value e’ {t)T
depends on v{t) and P (i.e., on social considera-
tions). A deeper reason and more compiete inter-
pretation is given in [7].

1.9. The “age-structure" of the population is
not an explicit part of this formuTation. There-
fore, these results are not "demographic" as

that term is normally understood.

2. THEORY OF LINEAGE ORGANIZATIONS

Recent papers such as [11],[14] place the pre-
sumption of distinctness of fields of study in
considerable question. In particular, from the
discussions of Hirshleifer(5),an integrated
theory would be based on family or other kin-
based associations; it would have a necessary
connection to population viability; and have an
equilibrium process analysis using reproductive
ratio. The present work support the views of
[14] in that the essential descriptions of kin-
ship and marriage form may be considered as le-
gal prescriptions (or, proscriptions), and may
be considered a theory of risk. (See appendix

to [7]).

In the mathematical theory of social anthropol-
ogy, a major problem is representing the struc-
tures of kinship and marriage which occur in
human cultural systems, and to find the statis-
tics associated with a population behaving ac-
cording to a given "marriage rule". The under-
lying structure assumed is a set, denoted by G
which we call a generation and upon which we

call a generation and upon which there may be
defined a number of relations such as: if a and
b are offspring of the same parents, write aBb =
1, and otherwise put aBb = 0. By such techniques
a variety of different relations may be defined
on G; call the collection of these the configura-
tion of G. This configuration is empirically
defined, but even so some of the relations (oper-
ations) found in it may have useful properties.
For example, the relation B just mentioned is a
partition of G. Also, it is often useful to

keep in mind that for any given operation, we

may define a corresponding matrix operator in an
appropriate Boolean algebra.

Now define a lineage organization of G as a
mapping
A G~ G/A

such that for all a,b ¢ G, if a = b mod B than
A(a) = A(b). From [15] we get immediately the
major result which is that given a particular
partition B with |G/B] = 3 and {G/A) = A that
the number of ways of forming distinct lineage
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organizations is given by the Stirling Number of
the Second Kind for placement of R objects into
X cells such that none is empty.

Define an i-th order lineage organization as the
i-th mapping in a sequence of mappings of the
form

AO : G+ G/B
Al : G/B -+ G/I\l

A G/Ar_1 + G/A. .

Thus B represents the zeroth order mapping, and
all others are lineage organizations each of
which preserves the lower ordered mappings. Call
such a system an r-layered lineage organization;
thus the ith-ordered lineage organization is also
the i-th layer of the r-layered system. The re-
sult on use of Stirling Numbers of the Second
Kind obviously also extends to each layer of an
r-layered lineage organization.

For some purposes it will be useful to have a
more specialized vocabulary covering patrilineal
and matrilineal systems, and I provide the fol-
lowing rather simple extensions of the above de-
finitions. Use m to denote the set of all males
in G and f to denote the set of all females in G.
Let By = BNm and let Bf = BNf. A patrilineal
lineage organization is a mapping I : G -~ G/II
such that if a = b mod By then Ni(a) = n(b). A
matrilineal lineage organization is a mapping

T : G~ G/T such that if a = b mod Bf then I'(a)
= T(b). A strong patrilineal lineage organiza-
tion is a mapping Iy : G » G/llg such that if
either a e mor b € m or both and a = b mod B
then Tg(a) = Hq(b). Make a similar definition
for strong matrilineal lineage organization [s.

The concepts of r-layered lineage organization
easily extend to these four types of lineage or-
ganizations. Note that any given lineage organi-
zation cannot be both strong matrilineal and
strong partilineal unless these two are identi-
cal. Thus for given G found empirically, the
types of lineage organizations possible are:
lineage organization; matrilineal lineage organi-
zation; patrilineal lineage organization; simul-
taneous matrilineal and patrilineal lineage orga-
nizations which may differ; strong matrilineal;
strong patrilineal. The case of identity of
strong matri- and patrilineal lineage organiza-
tions is the same as having neither prefix, hence
is the same as a lineage organization.

Let M denote the relation of "marriage" found in
the configuration of G.
an r-layered lineage organization of a generation
G. A lineage organized marriage rule is a set
of statements from the following list:

(1) for some Aj, a = b mod M if and only if a =b
mod M/Aj;

(2) for some Ay, @ = b mod M if and only if a #b

mod M/Aj;

Let {A}; j =1,...,r be -

(3) non-contradictory combinations of statements
of form (1) or form (2).

Statements of form (1) require lineage exogamy

at the i-th layer while statements of form (2)
require lineage endogamy at the i-th layer. Note
that if a system is endogamous at the i-th layer
then it is endogamous at all higher numbered lay-
ers, while if it is exogamous at the i-th layer,
then it is exogamous at all lower numbered layers.
Also note that one of the possible lineage orga-
nizations of a given set G with given partition

B is that which preserves descent groups. For
example, the first layer may be that which groups
all B-equivalent subsets of G into sets of indi-
viduals who are "first cousins" of each other,
through a given ancestral line. Therefore, some
kin-based marriage ru1?§ are special cases of
lineage organizations. )

I introduce a non-mathematical vocabulary for
classifying the amount of structure a system may
have. This vocabulary will label a system as
Sequence I, Sequence II, etc. according to how
many layers of grouping are required to describe
adequately an empirical system.

In a typical case we wish to predict the follow-
ing numbers shown in a diagrammatic Sequence II].

total size total total total
of offspring -~ number of + number of - number of
group households 1ineages phratries

To attain a concrete prediction up we must there-
fore first determine the total size of the pre-
reproductive age population. Call this Nj, enter
the table and predict up to a particular value we
can call Ly, which is a prediction of the number
of "households". Set L1 = N2 and predict up from
N2 to Lp which is a prediction of the number of
"Tineages" given N2 "households". Next, predict
up to number of "phratries", L3, by allowing L

= N3 and predicting up again from N3; and so
forth for higher levels when present:

offspring "household"
Np»Lp =

"lineages" '"phratries"

N2+L2 = N3+L3......
Note that the predicted average family size is
simply Nj/Lj. The total group size of a mono-
gamous system with stable mated pairs would be

Ny + 2L; plus an allowance for unmated individ-
uals in the adult generation computed as (1 -
2L1/N1IN1 = Np - 2L1. Adding these two estimates
gives the simple result that in_a monogamous sys-
tem the total population size of adults plus off-
spring is approximately 2Ny at equilibrijum.

This estimate makes no allowance for either sur-
viving post reproductive individuals, which

would raise the total, or for pre and post repro-
ductive mortality, which would lower the total
size. This result also implies that two time
variables completely determine the reasonably
possible age structures for any population at
equilibrium: the age at puberty, and the average
period in years of reproductive capacity of
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oretical statistics for

5. the theoretical average
r lineage; etc. Thus we
+gtudy of prediction down,
ceffect is not quite a simple
“pre fton up. For each}L value at

' table, there resuits a great-
which we ent:g ::: a least N value N, andgalso
11 N values between N% and N9 are associated
.ith-the particular L value uniquely. An exam-
:;ation of the sample table of the appendix will

s how this.
Therefore assume say a Sequence III system (a 4-

layered system) and construct the fan down:

offspring nouseholds  lineages phratries
Ngu}l’ = N L] =Ng<~L
Ny« L] = Ny Ly =Ng T3

In this case we need two pieces of information to
make a prediction: the system ideology which
provides the sequence number, and the number of
unites in the highest level of organization. For
this number, L3, predict an upper and lower bound
for the lower ranks of N and L values by contin-
unig to predict towards the largest N value in
each lower level from the previous L9, and to-
wards the ima11est value at each level from the
previous L*.

In computing the average population statistics,
rather than a unique value we get instead a range
of possible values. For example:

"
3

upper bound for average family size = N%/L?

n
3

lower bound for average family size = N%/L% 2

Also we get an estimate of the proportion of
socially ascribed, or "married", reproductive
females (and/or males depending on the ideology
expressed) with the respective

_ o X
= 2L1/N1

9/n9
2L{/N]

upper bound value P,

]
"

tower bound value p

g
Notice that because of the behavior of N and L

in the table, the roles of upper and lower bound
reverse for the n's and p's, but it is still true
that both ngpy = 2 and ngpg as required.

3. EMPIRICAL EXAMPLES

The thesis of the present section is that it is
possible to predict “the demography" (i.e., the
particular set of jointly occurring population
average measures) of a particular cultural system
from an ethnographic description of its marriage
rutes. The demography thus computed is indepen-
dent of the generation interval in years of the
system; it may constrain the possible age-struc-
tured birth and death schedules compatable with

the ethnography but does not predict them.

There are three examples: of a Sequence I system,
the Birhor as described in [19]; and two Sequence
II systems, the Hopi as described by [13]; and

the Kashmiri Pandit described in [12]. The Bir-
hor statistics illustrate the prediction of aver-
age value statistics rather than total group size
statistics for band size. From [19] page 79, the
average number of persons per band is 26.8; house-
holds per band 6.0; persons per househoid 4.49;
ratio of single to married undifferentiated by
age, as ratio of single/total population .502;
ratio of married males/total males .469; ratio of
married females/total females .530 of resident

22 bands.

Assume a Sequence I system maintaining 6 house-
holds. Placing Ly = 6, Ny ranges from 13 to 15
and average family size as from 2.16 to 2.50,
being closer to 2.50 for a relatively more endo-
gamous system. If a household consists of a male
and a female plus offspring, the theoretical esti-
mate of household size is from 4.16 to 4.50. An
estimate of total group size is obtained by dou-
b]iqg the estimate of offspring group size,
giving 2Ky from 26 to 30 per local group. Only
the p value is not closely predicted, but there
is a]so no evidence on whether the population is
growing.

The Sequence II example is the Moenkopi Hopi peo-
ple as described by [13]. The lowest level kin-
based unit is a woman pluys her offspring; then
the lineage as a grouping of related women; then
the clan as a grouping of related lineages.
Households do not always correspond with these
kin units in a simple way, since there has been
an apparent increase over time in the apparent
number of nuclear households (those with a male
plus female plus offspring}. The author of [13]
estimates 60% as an upper limit for this type
residence as a vercentage of all households.
Demographic data range from a population of 182
in 1910, to 592 in 1962, with steady growth.

The number of clans resident were reported as:
1906 - 10 clans; 1937 - 14 clans; 1948 - 15 clans;
1962 - 14 clans.

Clan number thus appears to be stable at 14 while
the population is growing as roughly 2% per year.
By prediction down from the clan number, the pre-
dicted values are given in table 1.

TABLE 1. Computations and predictions of various
demographic values for Moenkopi Pueblo.
Observed [ntermediate Predictions:
Clan N2 = L
Number values N n P 2N
10 min 25 83 3.32 .60 166
max 28 99 3.54 .57 198
14 min 39 146 3.74 .53 292
max 42 164 3.90 .51 329
15 min 43 165 3.83 .51 330
max 46 183 3.98 .51 366
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For the 1906 value of 10 clans the predicted
range of values of 2N is 166 to 198, while the
observed size is 182. Migrations post 1906 then
raise thE clan number to 14 by 1937, at which
time the reported population size is 409, while
the the#retical (2N) equilibrium size range is
292 to ‘398, By 1962, the reported size is 592,
approximately twice the size needed for a stable
exogamous community with clan number 14.

The study does not claim to accurately report the
completed family size (n). The theoretical (p)
value is .60 for 10 clans, and .51 to .53 for 14
clans in a Sequence 1I System. No observed pro-
portion of reproductive females is given, but the
distribution of household types shows that nucle-
ar families, plus bilateral extended families,
plus matrilineal households represent 78.3% of
all households, each of which may be taken to
correspond to a reproducing female. This may be
taken as a crude index of the proportion of repro-
ducing females. It is larger than the theoreti-
cal estimated range of .51 to .60. Thus if the
true proportion of reproductive females is p =
.78 instead of p = .5 to .6 as required by the
theory, then the system could only remain in
equilibrium if the empirical family size dropped
to around 2.2 or so, from the theoretical values
of closer to 3.5. Otherwise we expect some
growth, as is reported.

Consistency of theory with observed data is rein-
forced by the fact that Moenkopi Pueblo was both
politically, and residentially divided into two
approximately equal sized sub units, each at
approximately the lower range of the total theo-
retical population size needed to maintain a
Sequence II system of 14 highest level units.

The second exampleof a Sequence II system is a
Kashmiri Pandit population {12]. The sampled
area is a pairing of two closely linked but not
(yet) independently functioning communities,
Utrassu and Umanagri, composed of exogamous pat-
rilineally organized households, divided so that
Utrassu has 11 different patrilines and Umanagri

has 14. Using prediction down in each case, I
compute:
upper 1imit  upper Timit town
number of -+ population of
number of households offspring

patrilines Tower limit town

-+ population of
offspring

> lower limit
number of
households

These computations are summarized in Table 2 us-
ing values read out of the theoretical tables.
Estimates are also obtained for upper and lower
bounds of the actual population size, which both
cases fall in the predicted range!

TABLE 2. Computation of Theoretical Values of n,
p and of Population Size Using Technique of
"Prediction Down"

UTRASSU
Upper

UMANAGRI

Lower Lower Upper

Empirical
number of

lineages 14

Theoretical

11
numbers of /// \\\ //// \\\
29 31

Households 39 42

Theoretical
0ffspring l l l l
Population

Size = N 101 | 113 146 | 164

Theoretical [ [
n 3.45 3.65 3.74 3.90

Theoretical | |
p .57 .55 .53 .51

Theoretical | |
2N 202 226 292 328

Empirical
Village Size 214 308

4. CONCLUSION

This paper and its earlier companion [7] provide
the foundations for an effective theory of cul-
tural organization. This theory is based on a
Jogical or algebraic description of the cultural
rules, such as- found in part 2 here or in [5] or
in [6] chapter 4. From this description, char-
acteristic numbers which describe the size of an
jdealized structure are derived.

These characteristic or structural numbers (which
may also be group orders for certain rules) then
predict specific zero growth combinations of pop-
ulation measures. In [7] and in part 1 of the
present paper, these zero growth numbers, when
taken in certain operator formulations, lead to
statements of non-zero growth associated with
changes in the composition of a culture's rules.

The concrete numerical predictions of this new
theory were tested in the present paper against
three specific ethnographic "point in time"
studies, and in [7] on a 1000 year history. In
all examples, it was found that the theory inter-
prets the literary description of the cultural
system, and from this successfully predicts the
population measures actually found in the empiri-
cal system.

This body of theory therefore forms part of the
mathematical foundation of an empirical science:
social anthropology.

FOOTNOTES
(1) Many modern texts on thermodynamics tend to

treat their subject as a problem in analysis
of continuous functions. Earlier works,



560 P.A. Ballonoff

such as Guggenheim [10] were more cognizant [13] Nagata, S., Modern Transformations of Moen-
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tion function that underlie statistical ther- Urbana, 1974).
modynamics. Work such as Weinberg [18] page [14] Posner, R., A theory of primitive society,
99, which define a "Generalized thermodynam- Jrnl. Law and Economics (1980) 23(1):1-55.
ic law" in a form which potential recognizes [15] Schadach, Dieter, A classification of map-
probability foundations other than those pings, Report 2.2, Biological Computer Lab-
needed for gas dynamics, are very rare. The oratory, University of I1linois, Urbana
more familiar view of "General Systems", (1967).
such as by Bertalanffy [8] talk as if the [16] Weil, A., Appendix to White [17] (1963).
"second law of thermodynamics” can be liter- [17] White, H., An Anatomy of Kinship (Prentice
ally applied generally. I use the concept Ha1l, New Jersey, 1963).
"a statistical mechanics" to imply that sys- [18] Wienberg, Gerald M., An Introduction to Sys-
tems uing different fundamental statistics tems Thinking (Wiley-Interscience, New York,
will have different behavioral properties, 1975).
leading to prediction in the sense of Wein- [19] Williams, B.J., A model of band society,
berg. Society for American Archeology, Memoir #29
(2) The first development of this statistic was (1974).
in [6]. It was applied in [1] and in [7]
and in the present paper. A more thorough TABLES OF SAMPLE STATISTICS
development of the statistic and its meaning Properties of Stirling Number of the Second Kind
is under preparation as a new book by the at density for values of Sequences. r(t)T is
present author. the associated maximum growth or decline rate.
(3) See [16], [17], [3], [61, [7). T Faon
(4) See [6]’ [7]' N N N
(5) See [11] pages 17 to 39 and page 50. - N NN n P r(t)T
(6) The set of all possible lineage organiza- SEQUENCE III
tions of G form a simple, compactly gener- . }
ated, atomic, relatively complimented, semi- 2 g :, g : tg g'go l‘goo 223
modular lattice. See [9] page 96. ’ :
(7) The enumerative method of definition is cru- 3- 510~ 25 2.500 .800
cial to development of results. See for 6 >~ 15+ 46  3.067 .652  .204
$ﬁa?g}ec;2etg$vilopment of kin-based theory 45 716+ 47 2.938 681
prer . 924> 8 3.417 .585  .151
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[2] Ballonoff, P.A., Genealogical Mathematics ' ’
(Mouton, Paris, 1974). SEQUENCE 11
[3] Ballonoff, P.A., Genetics and Social Struc- 24 24 2 2.0 1.0
ture (DH&R, Stroudsburgh, PA, 1974b). 3+ 6 2.0 10 0
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Demographic Transition, Ballonoff, P.A. 3+ 5+ 10 2.0 1.0
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